
Unit – III, THE LAWS OF THERMODYNAMICS

Lecture Notes Dated: Sep 07-08, 2012

Carnot Refrigerator
Since a Carnot cycle consists of reversible processes, it may be performed in either direction. When it is

performed in a direction opposite to that shown in the examples of Carnot cycle, then this cycle is known as a

refrigeration cycle and the system is called a Carnot refrigerator which is represented symbolically in Figure 7.

Figure 7 (a) Carnot engine (b) Carnot Refrigerator.

The important feature of a Carnot refrigeration cycle, which separate it from any other reversible engine

cycle, is that the heat given to heat reservoir Q1, heat extracted from heat sink Q2 and work done on the working

substance W are numerically equal to those quantities when the cycle is performed in the opposite direction, i.e.,

in Carnot engine.

Thus, the cycle working in the reverse direction will act as an ideal refrigerator in which heat is taken

from the heat sink and transferred to the heat reservoir.

The efficiency or coefficient of performance for a refrigerator is defined as

= heat taken fromthe sink
work input

=
Q2

W
=

Q2

Q1−Q2
=

T 2

T 1−T 2
(35)

The  can be much greater than unity.

Carnot Theorem
Carnot's theorem is stated as follows; No heat engine operating between two given reservoirs can be

more efficient than a Carnot engine operating between the same reservoirs. In other words;  All heat engines

working between the same temperatures, the reversibile Carnot engine has the maximum efficiency. We now

proceed to prove this important theorem with the help of the second law of thermodynamics. 

Imagine a Carnot engine R (shown in figure 8), which is reversible, and any other engine I, which is

irreversible, working between the same two reservoirs (i.e., heat reservoir and heat sink) and adjusted so that

they both deliver the same amount of work W. Thus
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Carnot Engine   R     Irreversible Engine   I  

 Absorb heat Q1, from the heat reservoir. Absorb heat Q'
1 form the heat reservoir.

 Performs work W. Performs work W.

 Reject heat Q1 - W to heat sink. Reject heat Q'
1 - W to the heat sink.

 Efficiency R=
W
Q1

Efficiency I=
W
Q1

'

Let us assume that the efficiency of the engine I is greater than that of R. Thus

IR

or,
W
Q1

' 
W
Q1

so, Q1Q1
'

Now, let the engine I drive the Carnot engine R backward as a Carnot Refrigerator. The engine I and the

refrigerator R coupled together in this way form a self-contained machine, since all the work needed to operate

the refrigerator is supplied by the engine.

Figure 8 Irreversible engine I operating a Carnot refrigerator R.

The net heat extracted from the heat sink is ⇒Q1−W −Q1
' −W =Q1−Q1

'

The net heat delivered to the heat reservoir is also ⇒Q1−Q1
'

Therefore, the effect of this self-contained machine is to transfer (Q1 - Q'
1) heat from heat sink to a heat reservoir

without work being done by the surrounding. Since the machine violets the second law of thermodynamics, our

original assumption that IR  is false and Carnot theorem is proved. We may express this result as

I≤R (36)

Hence proved.
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Corollary to Carnot Theorem
According to  the corollary to Carnot  theorem; All  Carnot engine operating between the same two

reservoir have the same efficiency. We now proceed to prove this corollary;

Consider two Carnot engine  R1 and  R2, operating between the same two reservoirs. If we imagine R1

driving R2 backward, then Carnot theorem states that

R1
≤R2

If R2 drives R1 backward, then

R2
≤R1

But the efficiency of the first reversible engine cannot be both less than or equal to as well as greater than or

equal to the efficiency of the second reversible engine. Therefore, it follows that the efficiencies can only be

equal.

R1
=R2

(37)

Hence proved.

Clausius-Clapeyron Equation
The Clausius Clapeyron equation may be derived from a study of a Carnot engine. Consider a   Carnot

engine operating in the two phase region of the water vapour region, as shown in figure 9. In the reversible cycle

shown, processes  AB and CD are adiabatic and processes  BC and DA are isothermal and isobaric. During the

process BC, at temperature T + dT, n moles of liquid are converted to vapour at pressure p + dp; while during

process DA, at temperature T, n moles of vapour are converted back to liquid at pressure p. Thus from eq. (34)

Q1

Q2
=

T 1

T 2

or
Q1−Q2

Q2
=

T 1−T 2

T 2
(38)

The heat absorbed by the system during the isothermal process BC is, Q1=nLdL and

The heat liberated by the system during the isothermal process DA is, Q2=nL respectively, where L

and (L + dL) are the molar latent heat of vaporization at temperature T  and (T + dT) respectively. Thus,

T 1−T 2=TdT −T=dT

The work done by the system during the Carnot cycle is the area enclosed by the cycle ABCD, which is

almost a rectangle of width dp and length nΔv, where Δv is the change in molar volume at temperature T. Thus,

W=area ABCD=dpn v   

Therefore, eq. (38) becomes

W
Q2

=dT
T (39)

dpnv 
nL

=dT
T

or, within the coexistence region,
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dp
dT

= L
T  v (40)

This  equation is  known as  Clausius Clapeyron equation,  which shows how the melting point  and

boiling point changes with temperature. Some times it is called the first latent heat equation of Clausius.

Figure 9 pV diagram showing a Carnot cycle in the liquid-vapour region.

Clausius Equation: Specific Heat of Saturated Vapour
Let C1 denotes the molar specific heat of liquid in contact with its saturated vapours and C2 the molar

specific heat of saturated vapours in contact with its liquid. Let us consider n moles of the substance is taken one

Carnot cycle ABCD. Then

1. The quantity of heat absorbed during AB reversible adiabatic process, when its temperature rises by  dT is

equal to Q1
' =nC1 dT .

2. The heat absorbed by the system during the isothermal and isobaric process BC in which liquid changes into

saturated vapour at temperature T + dT is equal to Q1=n LdL .

3. The quantity of heat liberated during  CD reversible adiabatic process, when its temperature falls by  dT is

equal to Q2
' =nC 2 dT .

4. The heat liberated by the system during the isothermal and isobaric process DA in which saturated vapour

changes into liquid at temperature T is equal to Q2=nL .

The net amount of heat absorbed during the cycle ABCD must be equal to the work done by the system

during the Carnot cycle, thus

W=Q1
' Q1−Q2

' −Q2

W=nC1 dTnLdL−nC 2 dT−nL

W=nC 1−C 2dTndL (41)

From eq. (39),
W
Q2

=dT
T (39)

n C1−C 2dTndL
nL

=dT
T

or, C 2−C1=
dL
dT

− L
T (42)

This is the second latent heat equation of Clausius, it gives the variation of latent heat of a substance

with temperature and connects it with the specific heat of the substance in the two states.
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