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BAND THEORY OF SOLIDS
Dr. Satish Chandra, Associate ProfessorUnit - I

Why?

 When chemical elements crystallize to become solids, some
are good conductors, some are insulators, and yet others are
semiconductors with electrical properties that vary greatly
with temperature.

 These differences are not minor, but rather remarkable. 

 The resistivity may vary from  ~10 – 8 ohm-m for a good 
conductor to  ~10 22 ohm-m for a good insulator.



1/18/2022

2

QMFE

 In the quantum mechanical free electron (QMFE) model, we
assumed that the potential energy inside the solid was
uniform.

 It would be more realistic to assume that it is a periodic
(alternating uniformly) function of x, y, z.

 This is reasonable because of the periodic distribution of the
lattice ions in a crystalline solid.

Models

 When the interaction between the electrons and the lattice ions 
is considered, we will find some unusual properties possessed 
by the electrons in the crystal.

 There are several methods (or models) to show the existence
of bands and to find the shape of the band.

 The existence of bands and the general characteristics can be
achieved with idealized models and by using qualitative
arguments.
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Bloch's Theorem

 Before we proceed to study the motion of an electron in a
periodic potential, we should mention a general property of
the wave functions in such a periodic potential.

 For a free electron with U = constant, the space part of the
wave function  (x, t), called the eigenfunction (x), is
written as,

ikxex )(

Bloch's Theorem
 If the spacing of the ions in the x direction in a solid is d, then

the potential energy of an electron at a point x distance from
the origin is equal to the potential energy at a point x + d from
the origin.

 This potential energy is equal in turn to that at point x + 2d
from the origin, and so on. Therefore, we can generalize and
take any point x in the lattice and state that the potential
energy at that point is equal to the potential energy at point x
+ d.



1/18/2022

4

Bloch's Theorem

 Mathematically,

 This is known as a periodic potential. There is a theorem by
Bloch which states that for a particle moving in a periodic
potential, the eigenfunctions (x) are of the form,

 where,
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Bloch's Theorem

 These eigenfunctions are plane waves modulated by a
function uk(x), where uk(x) has the same periodicity as the
potential energy.

 Because the potential energy U(x) = U(x + d), one expects that
the probability of finding a particle at a given x is the same as
that of finding it at x + d.
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Bloch's Theorem
 This is seen by the periodicity of uk and can be seen in the 

following expression for the probability density

 Therefore, when

 Then

 The specific form of the function uk(x) will depend on the 
form of the function U(x).
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Kronig-Penney Model

 Let us try to understand what the potential energy of an 
electron in a crystalline solid may look like. 

 Consider a positively charged ion q and an electron e at a 
distance x from q as shown in Figure 1. 

 The electric potential energy from the coulomb attraction 
experienced by the electron is

x
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Kronig-Penney Model

Figure 1 U = 0

U

Kronig-Penney Model

 Suppose we now place another charge q at a point d away
from the first.

 The potential energy U at any point on the x axis will be equal
to the algebraic sum of the potential energies due to each
individual charge, as illustrated in Figure 2.

 The dashed lines represent the potential energy due to the
individual q's and the solid lines represent the sum of the
dashed lines.
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Kronig-Penney Model

Figure 2
U = 0

U

Kronig-Penney Model
 If we now place a long array of q's separated by a distance d

from each other to form a periodic array, the potential energy 
U looks like that shown in Figure 3. 

 The main features of the potential energy in Figure 3 are: 
 it is periodic with a period d, 
 the maxima are halfway between the ions, and 
 the potential energy tends to - ∞ as the position of the ions 

is approached 
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Kronig-Penney Model

Figure 3

U

Kronig-Penney Model

 We can replace the potential energy of Figure 3 with one that 
is mathematically simpler to handle while retaining the 
essential features of the actual one. 

 We replace the potential energy of Figure 3 by one consisting 
of periodically spaced rectangular wells as shown in Figure 4. 

 The potential energy is a series of rectangular wells of width 
c, spaced a distance b apart so that the periodicity d = b + c.
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Kronig-Penney Model

U = 0

U = U0

Figure 4

Kronig-Penney Model

 The energy of the wells is – U0. However, it is convenient to 
shift the zero of potential energy so that the bottoms of the 
wells are at potential energy U = 0 and tops are at U = U0.

 The potential energy of Figure 4 has the same periodicity as 
the lattice; the potential energy is lower in the vicinity of the 
ions and highest between the ions. 

 This potential energy model is known as the Kronig-Penney
model.
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Kronig-Penney Model

 Because U is either 0 or U0, we solve for ψ separately in both 
regions I and II.

 We then impose the conditions of continuity for ψ and dψ/dx, 
while meeting the periodicity requirements. 

 We will consider the case where U < U0.

Kronig-Penney Model

 In region I; U = 0, and the Schrodinger equation is written as

 where ψI is the eigenfunction in region I. Rearranging terms, 
we get

 where
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Kronig-Penney Model

 From Bloch's theorem,

 If we substitute this ψI in last equation, we get a differential 
equation for uI,

 The solution of this equation can be found by the standard  
methods

 where A and B are constants.
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Kronig-Penney Model

 In region II; U = U0, and the Schrodinger equation is written as

 where ψII is the eigenfunction in region II. Rearranging terms, 
we get

 where
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Kronig-Penney Model

 From Bloch's theorem,

 If we substitute this ψII in last equation, we get a differential 
equation for uII,

 The solution of this equation can be found by the standard  
methods

 where C and D are constants.
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Kronig-Penney Model
 It is seen in Figure 4 that regions I and II join at x = c/2, 

therefore, both the eigenfunctions and their first derivatives 
must be continuous across a boundary. It means

 In addition, the periodicity requirements must be satisfied.
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Kronig-Penney Model

 This can be done by choosing points separated by the period 
of the lattice d, such as x =  ̶  c/2 and x = b + c/2. 

 When we substitute Bloch functions for the ψ functions, that 
is,
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Kronig-Penney Model

 These four conditions on the eigenfunctions lead to four linear 
algebraic equations for the constant A, B, C, and D. 

 In solving these equations, it is found that a solution exists 
only if
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Kronig-Penney Model

 If this condition is not satisfied, the boundary conditions on ψ
cannot be satisfied, and the corresponding ψ's are not 
acceptable solutions. 

 In arriving at this equation, we used one of the forms of Bloch 
functions, namely, 

 The same result will be obtained if we use the other form, that 
is, 
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Allowed and Forbidden Energy Bands

 Finding a direct analytical expression is not possible but we
can get the result by qualitatively plotting the left side of this
equation, calling it f (γd).

 For example, let P = 5/2 π.
 The sine function is periodic, as in Figure 5, and P/γd behaves

as in Figure 6.
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Allowed and Forbidden Energy Bands

Figure 5

Allowed and Forbidden Energy Bands

Figure 6
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Allowed and Forbidden Energy Bands

 When we multiply these two functions to get the first term of 
f(γd), an oscillating function similar to sinγd results, but the 
amplitude will decrease with increasing γd. 

 Some values are shown in Table 1.

γd π 3π/2 π 5π/2 3π 7π/2 4π

0 -5/3 0 1 0 -5/7 0
d

d
P


sin

 Figure 7
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Allowed and Forbidden Energy Bands

 Between 0 and π we have to be careful, particularly close to γd
= 0, because when γd = 0, P sinγd/γd = P 0/0, which is 
undetermined. 

 We can, however, use the L'Hospital rule on limits that
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Allowed and Forbidden Energy Bands

Figure 8
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Allowed and Forbidden Energy Bands

 Thus, in the limit as γd → 0, sinγd/γd → 1.

 To get the entire function f (γd), we must add to Figure 7 the term 
cos γd, Figure 8. 

 Between 0 and π both functions decrease; therefore,  f (γd) 
decreases and becomes -1 when γd = π. 

 After π, the first term continues decreasing, while the second begins 
to increase. Because cosγd changes slowly near the maximum and 
minimum,  f (γd) continues to decrease below - 1.

Allowed and Forbidden Energy Bands

 Somewhere between π and 3/2 π the trend reverses itself and 
f(γd) begins to increase, reaching the value of + 1 at 2π. After 
2π the first term of f (γd) continues increasing while the 
second decreases. 

 Again, just as before, the first term increases at a faster rate 
than the rate of decrease of the second term, and as a result 
f(γd) continues (for a while) to increase past + 1. 

 Somewhere between 2π and 5/2 π the trend will reverse.
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 Figure 9

Allowed and Forbidden Energy Bands

 Consider the plot of f (γd)
versus γd.

 There are ranges of γd (shaded
regions) for which the values of
f (γd) vary between + 1 and -1.

 These ranges of γd are
separated by others for which f
(γd) is either greater than + 1 or
less than -1.
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Allowed and Forbidden Energy Bands

 The width of the shaded region, 
the ranges of γd for which f(γd) 
varies between + 1 and -1, 
increases as γd increases. 

 The condition that had to be 
satisfied for the solutions to the 
Schrodinger equation to be 
acceptable was, 

kddf cos)( 

Allowed and Forbidden Energy Bands

 Because cos kd takes values ranging from +1 to -1, this means
that this condition can be satisfied only by those values of γ
for which f(γd) lies within those limits.

 The values of γ for which f(γd) is outside these limits
correspond to γ's for which the boundary conditions cannot be
satisfied and, therefore, these γ's (and the corresponding E's)
are not physically acceptable.
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Allowed and Forbidden Energy Bands

 We conclude that, the electron may possess energies within
certain bands of energy but not outside of them: There are
allowed and forbidden bands of energy available to electrons
moving in a periodic lattice.

 The width of the allowed energy bands increases with
increasing γ (increasing energy E).

Dispersion Relation

 For a free particle the relation between the energy E and the 
momentum p is

 From de Broglie's relation, 

 and because ,

 it follows that,
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Dispersion Relation
 Substitution of this relation for p into the energy relation shows that

the energy of the particle can be expressed in terms of the wave
vector k as,

 The relation between the energy of a particle and its wave vector is
often referred to as the dispersion relation .

 For a free particle, this relation is parabolic. This dependence is
illustrated by the dashed lines of Figure10.

m
k

E
2

22


2kE 

Dispersion 
Relation

Figure 10



1/18/2022

23

Dispersion Relation
 When the particle is not free, the dispersion relation is usually 

more complicated. 
 Thus, as we have seen, for an electron moving in one -

dimensional array of potential wells the dispersion relation is 
given by,

 where
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Dispersion Relation
 If we solve the relation numerically for different values of E

and the corresponding values of k, we find that there are
energy intervals for which no real solution for k exists.

 These are the values of E for which the left side of relation is
either greater than + 1 or less than -1.

 As indicated in the K-P Model, this is physically unacceptable
and, therefore, these energy values are forbidden.

 Results are illustrated by the solid lines of Figure10.
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Dispersion Relation
 These solid lines yield the values of E and the corresponding 

values of k for certain ranges of E. 
 For other energy intervals the value of k is not defined by the 

solid lines, these are the forbidden energies.
 The curvature of the solid lines is not the same as that of the 

dashed line, which represents the dispersion relation for the 
free particle. 

 This has important implications concerning the effective mass 
of the electrons

Effective Mass

 When an electric field ξ; acts on a free electron, it exerts a
force eξ.

 That, from Newton's law, will produce an acceleration
inversely proportional to its mass,

 What happens when the electron to be accelerated is not free
but happens to be in a crystal under the influence of the
potential of the lattice ions?

mea /
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Effective Mass

 The answer is that it will still accelerate according to Newton's 
law; however, the electron responds as if it had some effective 
mass, which is different from its true mass. 

 As we will show, this is because ξ; is not the only electric field 
acting on the electron inside the crystal.

Effective Mass

 We will introduce this concept by using a semi-classical
picture: an argument that is half classical and half quantum
mechanical.

 The quantum mechanical part lies in the fact that the motion
of an electron is governed by a wave, and that the velocity of
the electron is equal to the group velocity vgroup of the wave,
that is, the velocity of the envelope, of the wave packet.
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Effective Mass

 In our treatment of matter waves and wave packets, we saw 
that the group velocity is given by

 where E is the energy of the particle and p is its momentum.

 In the case of a free particle, we can readily show that the 
group velocity is equal to the particle velocity. 

dp
dE

vgroup 

Effective Mass

 For a free particle, the energy

 Therefore,

 Although we have shown that vg = vp for the free particle case
only, it can be shown that the relation holds even when the
particle is not free, such as the case of an electron in a lattice.
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Effective Mass

 Now we define the group velocity in terms of E and k. This 
can be done by using de Broglie's relation,

 and the fact that, 

 We have,

 Substituting this, we obtain
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Effective Mass

 The classical part of the argument uses the definition from 
mechanics that if a force does work dW on a particle, the 
energy of that particle increases by the same amount, that is,
dE = dW. 

 Applying this to the present case, we have

dtvedt
dt
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Effective Mass

 The rate at which the energy of the particle is changing is 
therefore

 We also know from Newton's law that when a force acts on a 
particle, it will be accelerated.

 By definition, the acceleration a is,

gve
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a gparticle 

Effective Mass

 Substituting for vg we obtain
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Effective Mass
 Noting that eξ is the force of the externally applied electric 

field, we conclude has the form F = m*a, where

 The response of the electron in the solid to an externally
applied electric field is as if it had an effective mass m* given
by the above expression.
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Effective Mass

 For the free electron,

 Substitute this result into m* and we obtain,
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Effective Mass
 When the electron is free, the effective mass m* is the true

mass m, as it should be.
 However, when the electron is in a crystal, m* is different

from m because the energy is not proportional to k2, as we saw
in the Kronig-Penney model.

 The reason is that the electron in the crystal moves under the
influence of internal forces exerted by the electric fields of the
ions of the lattice and the external force resulting from the
externally applied electric field.

Effective Mass

 We see that for small values of k the 
effective mass m* is essentially equal to 
the mass of a free electron m. 

 As dE/dk approaches the maximum, d2E/dk
begins to decrease and m* increases. 

 When dE/dk reaches the maximum, d2E/dk
= 0 and m* becomes infinite. 

 Subsequently, d2E/dk becomes negative 
and m* is negative.
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Effective Mass

Figure 11 2
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Effective Mass

 We may draw the following conclusions about the effective 
mass m* of an electron moving in a periodic lattice.

 m* is not always equal to m.

 m* can be greater than m and, in fact, infinite.

 m* can be less than m or even negative. 2
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Hall Effect
 Suppose we have a conducting

metal strip of width d and
thickness t connected in a circuit
and placed in a uniform magnetic
field B as in Figure 12.

 Let the direction of the magnetic
field be into the paper, indicated by
the symbol ⊗, which suggests the
tail of an arrow.

Figure 12

Hall Effect

 The electric field ξx responsible for
the current i will be directed to the
right.

 If we assume for the moment that
the current is caused by positive
charges, their drift velocity v will
be in the direction of ξx as shown
in Figure 12.
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Hall Effect
 Let us consider two points D and C

on the metal strip such that the line
joining the two points is
perpendicular to ξx.

 Without the magnetic field, the
potential difference between these
two points is zero because no work
is done in moving a charge from
one point to the other.

Hall Effect

 When the magnetic field is turned
on, the drifting charges will
experience a force.

 We label this force FB to indicate
that this is the force caused by the
magnetic field B.

qvBF

BvqF
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Hall Effect

 This force causes the (Figure 13)
positive charges to move to the upper
part of the conducting strip while
they are moving to the right.

 Because the sample as a whole must
remain neutral, the lower part of the
strip will become negatively charged.

Figure 13

Hall Effect

 The accumulation of positive charges
along the upper part and of negative
charges along the lower part creates
an electric field ξy that opposes the
further upward drift of positive
charges.
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Hall Effect

 There will be a potential difference
VH between D and C associated with
this electric field.

 where it is assumed that in
equilibrium ξy is constant and d is the
width of the strip (the distance
between D and C).

dVVV yCDH 

Hall Effect

 This voltage difference is called the
Hall voltage after the physicist who
first measured it, and the
phenomenon is called the Hall effect.

 It is clear that the equilibrium Hall
voltage VH will be established when
the downward force of ξy equals the
upward force resulting from the
magnetic field.
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Hall Effect
 When a magnetic field is applied

to a current carrying conductor in
a direction perpendicular to that
of the flow of current, a potential
difference or transverse electric
field is created across a
conductor.

 This phenomenon is known as
Hall Effect and was discovered
by Edwin Hall in 1879.

Hall Effect

 Because the force of the electric 
field is given by Fξ = qξy , we 
can say that at equilibrium

 So,
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Hall Effect
 Because the Hall voltage can be readily measured by

connecting a voltmeter between D and C, the Hall effect
permits the experimental determination of the drift velocity of
the charge carriers. As we know,

 So,
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Hall Effect

 Note that A is the cross-sectional area of the foil. Hence 

 A = thickness (t) x width (d). Therefore

 or,

 where , is called the Hall coefficient.
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Hall Effect

 Because i, B, and t are measurable, the magnitude of the Hall
voltage will yield the value of N, the density of charge
carriers.

 The polarity of the Hall voltage will tell which type of carrier
is responsible for conduction.

 The semiconductors can be made to have either positive or
negative charge carriers.

HqR
N

1

Hall Effect
 If the charge carriers were 

positively charged. The charges 
were deflected toward upper part 
of foil, raising the potential of 
point D with respect to point C.

 If charge carriers are negatively 
charged, the upper part will have 
negative charges and the lower 
part have positive charges. Point 
D will now be at lower potential 
than point C.
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Application of Hall Effect

Determine the Type of Semiconductor

 By knowing the direction of the Hall Voltage, one can
determine that the given sample is whether n-type
semiconductor or p-type semiconductor.

 This is because Hall coefficient is negative for n-type
semiconductor while the same is positive in the case of p-type
semiconductor.

Application of Hall Effect

Calculate the Carrier Concentration

 The expressions for the carrier concentrations of electrons (n) 
and holes (p) in terms of Hall coefficient are given by,
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Application of Hall Effect

Determine the Mobility (Hall Mobility)

 Mobility expression for the electrons (μn) and the holes (μp),
expressed in terms of Hall coefficient is given by,

 where, σn and σp represent the conductivity due to the
electrons and the holes, respectively.

Hnn R  Hpp R 

Application of Hall Effect

Measure Magnetic Flux Density

 This equation can be readily deduced from the equation of
Hall voltage and is given by

 Further, there are many commercially available types of
equipment based on the principle of Hall effect including
Hall-effect sensors and Hall-effect probes.
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End

Band Theory of Solids


